³_AH and ⁴_AH mesonic weak decay lifetime measurement with ^{3,4}He(K⁻, π^0)^{3,4}_AH Reaction

Apply for stage-1 approval

on behalf of the P73 Collaboration

Summary of the P73 Experiment

- Direct measurement of the **hypertriton** $({}^{3}_{\Lambda}H)$ lifetime using (K^{-},π^{0}) reactions.
- The experiment will be **ready at K1.8BR** in early 2020.
- We request 1 week (1d+6d, 50kW equiv.) beamtime for ⁴_AH as a pilot run in 2020.

>after feasibility study with ${}^{4}{}_{\Lambda}H$, we would like to request the ${}^{3}{}_{\Lambda}H$ physics run (~4 weeks, 50kW equiv.).

Physics Motivation

 Recent heavy-ion experiments reported different lifetime of hyper-triton, ³_ΛH:

STAR (2018)	ALICE (2018)	free Λ
142 ⁺²⁴ ₋₂₁ ± 29 ps	237 ⁺³³ ₋₃₆ ± 17 ps	263 ± 2 ps

τ(³_ΛH)~τ(free Λ) is naively expected, because ³_ΛH is known to be very loosely bound system (~0.13MeV)

need to clarify the situation using different experimental technique

Heavy-Ion Experiment

Heavy-ion experiment STAR, ALICE, HypHI

Invariant mass reconstruction

- Difficult to use ${}^{3}_{\Lambda}$ H information in ct~0cm region
- Huge combinatorial BG

Direct Lifetime Measurement

Heavy-ion experiment STAR, ALICE, HypHI

Invariant mass reconstruction

- Difficult to use ³_AH information in ct~0cm region
- Huge combinatorial BG

Direct measurement NO counter experiment so far -> P73, P74

- Delayed time of π^- in mesonic weak decay ~ at rest
 - Wide-range fitting is possible
 - Quasi-free Y $\rightarrow \pi^-$ N is dominant BG

(K⁻, π^{0}) and (π^{-} ,K⁰)

	P73	P74		
Reaction	³ He(K⁻,π ⁰)³ _∆ H	3 He(π^{-} ,K ⁰) $^{3}_{\Lambda}$ H		
Measurement	Delayed π^- from ${}^3_\Lambda$ H decay			
Decay mode	2-body	2- and 3-body		
$^{3}{}_{\Lambda}$ H identification	mono-energetic π^-	(π^- ,K ⁰) missing mass \bigcirc		
Beamline	K1.8BR 🙂	K1.1		
Beam	2x10 ⁵ 1.0 GeV/c K ⁻	$1 ext{x} 10^7$ 1.05 GeV/c π^-		
main spectrometer	CDS 🙂	SKS + vertex		
L ³ He target	In hand 🙂	-		
Expected yield	~1k/month	~0.6k/month		
Trigger tag	γ from π^0 for BG suppression	$\pi^{+}\pi^{-}$ from K ⁰ for ³ _A H identification		
Main BG	QF	QF + K ⁰ -reconst.		

Experimental Principle

PbF₂ Calorimeter

- we can perform on-line discrimination of γ and π
 - Hadron blind with ΔE cut
 - Radiation hardness (x10 times more resistive than Pb glass)

Experimental Setup

Beam spectrometer & CDS → Ready

al Setup

or System (CDS)

PbF2 Calorimeter → 40 sets on hand & Will be ready by the beginning of 2020

0

運転中

6.0 5 7 2 4672 PHB 414

Reported Issues in the Previous (27th) PAC (based on 26th PAC comments)

- Kaon in-flight decay background
 - **Negligible** effect on ³_AH lifetime
 - Most of in-flight decays are out of the CDS acceptance
- <u>Reaction induced background</u>
 - Almost of all π^- BG are originated from QF Λ/Σ^- decays
 - QF K⁻p $\rightarrow \Lambda \pi^0 / \Sigma^0 \pi^0$ and K⁻n $\rightarrow \Sigma^- \pi^0$ reactions
 - BG evaluation with ⁴He target is absolutely essential
- <u>Setup optimization</u>
 - The target and the calorimeter positions were **optimized**
- <u>Statistical and systematics error estimation</u>
 - Statistical error: ~±20 ps (with 4 weeks data taking)
 - Systematic error: ~±20 ps

Expected π^- Spectrum of ${}^3_\Lambda$ H

- The spectrum with ~4 weeks data taking at 50kW
 - # of expected signal is ~1k
 - BG is estimated with MC based on Geant4 using K⁻ + p reactions.
 - K⁻p $\rightarrow \Lambda \pi^0$ ~ 3.5 mb is dominant
 - $K^-p \rightarrow \Sigma^0 \pi^0 \simeq 0.9$ mb and $K^-n \rightarrow \Sigma^- \pi^0 \simeq 0.9$ mb are suppressed by ΔE cut of the calorimeter (>600MeV)

Expected S/BG Ratio with Different Models

Signal yield is assumed to be ~ 1k in all cases (4w, 50kW)

Lifetime Evaluation

Answer to the 27th PAC Comments

The PAC appreciates the effort made by the P73 collaboration to provide rather advanced simulations. Compared to the 3,4 He($\pi^-,$ K⁰) ${}^{3,4}_{\Lambda}$ H reaction, the 3 He(K⁻, π^0) ${}^{3}_{\Lambda}$ H method seems to suffers from significantly larger background. However, it provides slightly larger yields. Nevertheless, arguments leading to the quoted systematic error in the lifetime measurement of 20 ps should be presented more comprehensibly.

Syst. err. will be mainly originated from two types of errors:

- <u>Time Zero Alignment</u> <5 ps
 - Estimated with the E15 (K⁻ + ³He) data ← Next page
- <u>Background subtraction</u> ~20 ps
 - Guesstimated from the previous experiment of ${}^{4}{}_{\Lambda}$ H at KEK
 - Have to be confirmed with real data analysis with the pilotrun data of K- + ⁴He

Time Zero Alignment Estimation with the E15 Data

- E15-2nd data (Run65, ³He(K⁻,π⁻)X)
 - Time zero can be determined within 5 ps
- Error propagated from the time zero alignment is estimated to be <5 ps with MC simulation

Dr. Yamaga, RIKEN

Answer to the 27th PAC Comments

The PAC appreciates the effort made by the P73 collaboration to provide rather advanced simulations. Compared to the 3,4 He(π^{-} ,K⁰) ${}^{3,4}_{\Lambda}$ H reaction, the 3 He(K⁻, π^{0}) ${}^{3}_{\Lambda}$ H method seems to suffers from significantly larger background. However, it provides slightly larger yields. Nevertheless, arguments leading to the quoted systematic error in the lifetime measurement of 20 ps should be presented more comprehensibly.

We strongly request the ⁴He pilot run for (K⁻, π^0) background investigation

<u>Background subtraction</u> ~20 ps

• Guesstimated from the previous experiment of ${}^{4}{}_{\Lambda}$ H at KEK

 Have to be confirmed with real data analysis with the pilotrun data of K- + ⁴He

Expected π^- Spectrum of ${}^4_\Lambda$ H

- The spectrum with ~6 days data taking at 50kW
 - # of expected signal is ~1k
 - $N(_{\Lambda}^{3}H)$ is expected to be ~ $N(_{\Lambda}^{4}H) \times \frac{1/3}{CS} \times \frac{1}{2} [Br(2-body)]$
 - BG is estimated as with ³He.

Based on theoretical CS & BNL E905 results

Realistic Estimation using ⁴He Data

- We can do an realistic estimation of the ${}^3_{\Lambda}$ H measurement using the BG in K⁻ + ⁴He data
 - BG will be almost the same between ³He and ⁴He
 - A sensitivity study can be possible with various $\sigma({}^3_\Lambda H)$ $_{^{21}}$

Schedule

• To perform the experiment before the long shutdown scheduled in 2021, we would like to conduct the pilot run in 2020.

Request for stage-2 approval

Summary of the P73 Experiment

- Direct measurement of the hypertriton (${}^{3}_{\Lambda}$ H) lifetime using (K⁻, π^{0}) reactions.
- The experiment will be ready at K1.8BR in early 2020.

 We request 1 week (1d+6d, 50kW equiv.) beamtime for ⁴_AH as a pilot run in 2020.

after feasibility study with ⁴_AH, we would like to request the ³_AH physics run (~4 weeks, 50kW equiv.).

P73 Collaboration

T. Akaishi⁹, H. Asano¹, X. Chen⁴, A. Clozza⁶, C. Curceanu⁶, R. Del Grande⁶, C. Guaraldo⁶, C. Han^{4,1}, T. Hashimoto³, M. Iliescu⁶, K. Inoue⁹ S. Ishimoto², K. Itahashi¹, M. Iwasaki¹, Y. Ma¹, M. Miliucci⁶, H. Ohnishi¹⁰, S. Okada¹, H. Outa¹, K. Piscicchia^{6,8}, F. Sakuma¹, M. Sato², A. Scordo⁶, K. Shirotori⁹ D. Sirghi^{6,7}, F. Sirghi^{6,7}, S. Suzuki², K. Tanida³, T. Yamaga¹, X. Yuan⁴, P. Zhang⁴, Y. Zhang⁴, H. Zhang⁵

¹RIKEN, Wako, 351-0198, Japan

 ²High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
 ³Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
 ⁴Institute of Modern Physics, Gansu 730000, China
 ⁵School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China
 ⁶Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
 ⁷Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania
 ⁸CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy

> ⁹Osaka University, Osaka, 567-0047, Japan ¹⁰Tohoku University, Miyagi, 982-0826, Japan

Backup Slides

"free K⁰_S" Lifetime with the E15 Data

In stead of Λ , we evaluated K^0_s lifetime with $K^0_s \rightarrow \pi^+ \pi^-$ reconstruction

"free Λ " Lifetime Evaluation with the E15 Data

The main BG in P73 is ~100 MeV/c Λ , whose decay p CANNOT be detected by the CDS.

- We tried to obtain the lifetime using $\Lambda \rightarrow p\pi^-$ event sample
- However, we found that there are difficulties after $\Lambda \rightarrow p\pi^-$ reconstruction with the proposed method **at this moment**
 - low "proton" efficiency in low p_{Λ} region \rightarrow large $\tau_0 \leftarrow$ need efficiency correction
 - large *ct* in high p_{Λ} region \rightarrow small τ_0

Trigger Scheme

- Main trigger is "K⁻-beam* CDH-1hit * E-cal"
 - will be <<1k/spill estimated from E15 trigger ("K*CDH1*γ/n")
 - up to ~5k/spill is acceptable by keeping ~95% eff. (HUL & HD-DAQ)
- R(τ) is obtained with calibration trigger of (π^-,π^-)

Background from Theoretical Calculation

 Expected BG yield is much different btw "Geant4-CS" and "theoretical-CS"

Background from BNL ⁴He(K⁻, π^-) Exp.

• Expected BG yield is less than that based on "Geant4-CS"

- S/BG~1/0.5 @ ⁴He(K⁻,π⁻), 0.6 GeV/c S/BG~1/16 @ ³He(K⁻,π⁰), 1.0 GeV/c
- S/BG~1/2 @ ⁴He(K⁻,π⁰), 1.0 GeV/c
 - mom-transfer 50 \rightarrow 100 MeV (x~1/4)
- - σ(³_ΛH) ~ 1/3 x σ(⁴_ΛH)
 - BR($^{3}_{\Lambda}$ H-2body) ~ 1/4, BR($\Lambda \rightarrow p\pi^{-}$) ~ 2/3

Background Estimation $w/o \Delta E cut$

- including low-energy γ (π^0)
 - can be reject with ΔE cut
- E15 data favors H₂ simulation
 - thus we employ H₂ sim.

momentum tracked with CDS

${}^{4}_{\Lambda}$ H Lifetime @ KEK

- ⁴He(stopped K⁻, π^-)⁴ _AH reaction
- The lifetime was obtained from a fitting with a simulated spectrum

Binding Energy of ${}^3_{\Lambda}$ H?

- The STAR experiment also reported rather large binding energy of ~0.4 MeV
- However, the lifetime is expected not to be shorten so much, even if the binding energy is as large as the START reported

STAR, arXiv:1904.10520

Slides from the 27th PAC

Performance estimation: yield estimation

³ _A H signal yield	~1000 events/4 weeks		
π- & π0 acceptance	6%		
³₄H→³He+π- b.r.	25%		
DAQ efficiency	90%		
Beam acceptance	60%		
Accelerator up time	80%		
σ of ³ _Λ H g.s.	0.0126 mb		
K- intensity @ 1GeV/c	2×10 ⁵ /5.2s		
Target: liquid 3He, 10cm	1.6×10 ²³ /cm ²		

 ${}^{4}\Lambda$ H signal yield (same target cell):

~3(cross section)×2(π⁻ branching ratio)×³_ΛH signal yield ==> **~1000 events/1 week**

Performance estimation: ³^AH cross section

³He(K⁻, π^0)³_AH cross section calculated by Prof. Harada, using the CDCC (continuum discretized coupled-channels) method and DWIA

Performance estimation: ⁴_AH cross section

⁴He(K⁻, π^0)⁴_ΛH @ 1.0 GeV, 4deg: ~0.44mb (scaled) ³He(K⁻, π^0)³_ΛH @ 1.0 GeV, 4deg: ~0.15mb (calc.) No direct calculation available

for ${}^{4}\text{He}(K^{-}, \pi^{0}){}^{4}{}_{\Lambda}\text{H}$ reaction at 1GeV/c

1, for ${}^{4}\text{He}(K^{-}, \pi^{-}){}^{4}_{\Lambda}\text{He reaction}$, $\sigma^{3.5}$ mb/sr at 0.6GeV/c, 4deg

2, taking into account isospin coupling factor of ½

3, considering recoiling momentum and $n(K^{-}, \pi^{-})\Lambda$ elementary cross section between 0.6 and 1.0 GeV/c Kbeam

Elementary CS @ 0 degree is almost the same

- K⁻n \rightarrow $\Lambda \pi^{-}$: ~2.5mb @ 0.6GeV/c (q~50MeV/c)
- K⁻p→Λπ⁰: ~2.5mb @ 1.0GeV/c (q~100MeV/c)

${}^{4}\Lambda H$ cross section *estimated* to be ~3 times of ${}^{3}\Lambda H$

Part I: Performance estimation

	Reaction(decay) and final states		Charged particle timing structure	Branching ra- tio	$\sigma [mb/Sr] \text{for} \\ p_{K^-} = 0.9 \text{GeV/c} \text{and} \\ \theta_{\pi^0} = 0 \qquad \qquad$
	$K^{-3}He \rightarrow \pi^{0}{}^{3}_{\Lambda}H \rightarrow \pi^{0}$	$\int \pi^0 \pi^{-3} \mathrm{He} \to 2\gamma \pi^{-3} \mathrm{He}$	delayed π^-	?%	?%
		$\pi^0 p n n_s \rightarrow 2\gamma p n n$	delayed p	?%	?%
out of	$\left(\begin{array}{c} \pi^0 \mu^- \bar{\nu}_\mu \to 2 \end{array} \right)$	$2\gamma\mu^-\bar{\nu}_\mu$	prompt μ^-	3.32%	
pi0⊕pi- →	$\mathbf{K}^- \rightarrow \left\{ \begin{array}{c} \pi^0 \pi^- \rightarrow 2\gamma \pi \end{array} \right\}$	π-	prompt π^-	20.92%	Not included
acceptance	$\pi^0\pi^0\pi^- ightarrow 4\gamma\pi^-$		prompt π^-	1.76%	
	$\mathbf{K}^{-} \mathbf{p} \to \pi^{0} \Lambda \to \begin{pmatrix} \pi \\ \pi \\ \pi \end{pmatrix}$	$\pi^0 \ \pi^0 \ \mathbf{n} \to 4\gamma \ \mathbf{n}$	N. A.	35.8%	
		$\pi^0 \pi^- p \to 2\gamma \pi^- p$	delayed π^- , p	63.9%	4.5
	$\mathrm{K}^- \mathrm{p} ightarrow \pi^0 \Sigma^0 ightarrow \pi^0 \gamma$	$\gamma \wedge \rightarrow \int \pi^0 \gamma \pi^0 n \rightarrow 5\gamma n$	N. A.	35.8%	0.26 (cooled)
		$\left(\begin{array}{c} \pi^{0} \gamma \pi^{-} p \rightarrow 3\gamma \pi^{-} p \right) \right)$	delayed π^- , p	63.9%	0.50 (scaled)
	$K^- p \rightarrow \pi^- \Sigma^+ \rightarrow \int f$	$\pi^- \pi^0 p \rightarrow 2\gamma \pi^- p$	prompt π^- , delayed p	51.57%	0.0
		$\pi^- \pi^+$ n	N. A.	48.31%	0.9
	$K^- p \rightarrow \pi^+ \Sigma^- \rightarrow \pi^+$	π ⁻ n	N. A.	100%	Not included
	$ \begin{array}{c} \mathbf{K}^{-} \mathbf{n} \to \pi^{-} \Lambda \to \begin{cases} \pi^{-} \pi^{0} \mathbf{n} \to 2\gamma \pi^{-} \mathbf{n} \\ \pi^{-} \pi^{-} \mathbf{p} \to 2\pi^{-} \mathbf{p} \end{cases} \end{array} $	$\pi^- \pi^0 \mathbf{n} \to 2\gamma \pi^- \mathbf{n}$	prompt π^-	35.8%	Notineluded
		N. A.	63.9%	Not included	
	$ \begin{cases} K^- n \to \pi^- \Sigma^0 \to \pi^- \gamma \Lambda \to 0 \end{cases} \pi^- \gamma \pi^0 n \to 3\gamma \pi^- \gamma \Lambda \to 0 \end{cases} $	$\gamma \Lambda \rightarrow \int \pi^- \gamma \pi^0 n \rightarrow 3\gamma \pi^- n$	prompt π^-	35.8%	Notingludged
		$\pi^- \gamma \pi^- p \to \gamma 2\pi^- p$	N. A.	63.9%	not included
	${\rm K}^- \ {\rm n} ightarrow \pi^0 \ \Sigma^- ightarrow \pi^0$	$\pi^- n \rightarrow 2\gamma \pi^- n$	delayed π^-	100%	0.9 (scaled)

Performance estimation: pi- resolution

According to GEANT4 simulation, ~2% momentum resolution is achieved for total $\pi^$ momentum (pt + pl) after energy loss correction.

T. Hashimoto PhD thesis, University of Tokyo, 2013

Kaon in-flight decay background

- dE veto counter <= 0.2 MeV && PbF2 calorimeter >= 600 MeV
- IH == 1 && CDS charged track == 1
- CDS tracking mass >= 0 && <= 0.3 GeV/c²
- DCA <= 5mm && fiducial cut

From Monte Carlo information, only hyperon and hypernucleus events survived the event selection --> effective trigger and analysis method

Reaction induced background

- True background shape may be somewhere in between these two cases (an open question)
- Even for the high background case(Hydrogen), we still can identify the signal region
- ⁴^AH signal locates ~130MeV/c, which will have better S/N ratio for both cases: <u>one week beam time(50kW) with ⁴He target</u> can tell us the feasibility

Setup optimization

- A balance between S/N and statistical error
- Leave PbF2 calorimeter away from CDS spectrometer to avoid contamination and magnetic field effect on PMT

PbF2 calorimeter

Crystal size: 2.5cm x 2.5cm x 13cm In total: 36 segments, 6x6 --- 40 pieces in stock PMT: H6612 (¾ inch PMT) --- 40 pieces in stock

- Signal calibration will be performed this year (2019)
- Ready to run by the beginning of 2020

PbF2 calorimeter test @ ELPH

the 2nd experimental room in ELPH

- We are planning to conduct calorimeter test using ~ GeV γ or positron at ELPH, Tohoku-U in the end of this year (2019)
 - Gain-uniformity/Position-dependence/Energy-dependence/...

liquid ^{3,4}He target

- Liquefaction system is changed from "syphon type with L⁴He refrigerant" to "Pulse tube refrigerator"
- Designed by Dr. Ishimoto and Dr. T. Hashimoto
- Ready to run by the beginning of 2020

$p(K^{-},\pi)Y$ Cross Section

[10] G. Armenteros et al., Nucl. Phys. B, 8, 233, (2012)

Recoil of ${}^3_\Lambda H$

calculated with the SRIM package

³_AH stops after 200ps within 1mm; the recoiling effects on lifetime and π^- momentum is negligible