J-PARC P73:

${}^{3}\Lambda$ H mesonic weak decay lifetime

measurement with ${}^{3}\text{He}(K, \pi^{0})^{3}_{\Lambda}\text{H}$ reaction

Status report for T77 as a feasibility study for P73 ${}^{4}\text{He}(K^{-}, \pi^{0}){}^{4}_{\Lambda}\text{H}$ reaction @ 1GeV/c, 3days × 50kW

y.ma@riken.jp

2020/07/21

Outline

- Introduction to J-PARC P73:
 - The first direct measurement for ${}^{3}_{\Lambda}$ H lifetime
- Feasibility study for P73:
 - T77 experiment
- Summary & beam time request

Introduction: motivation

As the lightest hypernucleus, ${}^{3}_{\Lambda}$ H should tell us some important fact of YN interactions just as deuteron for nuclear physics.

Up to a few years ago, we believe: $\tau \approx 263 \text{ ps} (B_{\Lambda} = 130 \pm 50 \text{ keV}).$

decay probability: kinematics× | transition matrix |² ~ phase space×wave function overlap a small term (separation of ~10fm)

A well separated wave function between Λ and deuteron implies small modification of ${}^{3}_{\Lambda}$ H lifetime from deuteron and, thus, its lifetime should be presumably determined by free Λ decay.

Introduction: motivation

As the lightest hypernucleus, ${}^{3}_{\Lambda}$ H should tell us some important fact of YN interactions just as deuteron for nuclear physics.

Hypertriton lifetime puzzle challenges the very foundation of our knowledge for hypernucleus.

Collaboration	Experimental method	$^{3}_{\Lambda}$ H lifetime [ps]	Release date
ALICE	Pb collider	240^{+40}_{-31} (stat.)±18(syst.)	2019
STAR	Au collider	$142^{+24}_{-21}(\text{stat.})\pm 29(\text{syst.})$	2018
HypHI	fixed target	$183^{+42}_{-32}(\text{stat.})\pm 37(\text{syst.})$	2013

Up to a few years ago, we believe: $\tau \approx 263 \text{ ps} (B_{\Lambda} = 130 \pm 50 \text{ keV});$ However, heavy ion experiments suggest $\tau \approx 180 \text{ ps...}$

Neither fish nor fowl?

Picture taken from MM. Block et al. Proc. Int. Conf. Hyperfragments, 1963

Heavy ion results vs direct lifetime measurement

Heavy ion results:

Direct lifetime measurement:

- * Convert decay length to lifetime (t = $L/\beta\gamma c$); * Lifetime convoluted with time resolution;
- Statistics concentrate in the first few bins.

Relatively wide fitting range.

L. Adamczyk et al., Phys. Rev. C, 97, 054909, (2018) H. Outa, et al., Nucl. Phys. A 547, (1992), 109c-114c

P73 Experimental setup

The idea of *direct measurement*: $T_{CDH}-T_0=t_{beam}+t_{\pi}-+\tau$;

- 1. A complementary measurement for Heavy Ion results
- 2. Achievable precision: $\sigma/\sqrt{N} \sim 30$ ps

T77 experiment: background study for P73

6G Kaon- shoot on He4 target, ~3days, in June 2020

Identical with P73 experimental setup except the target material: P73: ³He, T77: ⁴He ⁴_ΛH has ~6 times higher S/N than ³_ΛH (⁴_ΛH/³_ΛH ~ 3 × B.R. 2)

PbF2 calorimeter performance

- PbF2 calorimeter is installed *INTO* the meson beam line to tag fast pi0;
- All segments of PbF2 calorimeter works well with reasonable resolution even in high rate conditions.

CDS tracking performance

- CDS tracking system works well;
- ~2% momentum resolution for ~100MeV/c pi- signals;
- Further improvement can be expected by employing energy loss correction (in progress)

T77 results: pi- spectrum from ${}^{4}_{\Lambda}H$

With *only 3days* beam time, we successfully observed ~1.2k ⁴_AH-->⁴He+pi- events.

T77 results: pi- spectrum from ${}^{4}_{\Lambda}H$

- T77 refreshes world record for ${}^{4}{}_{\Lambda}$ H statistics by twice;
- New method improves S/N by ~ 10 times;
- * All these happen within 3days of beam time!

Estimation for ³_AH yield based on T77

- * JLab data shows ${}^{3}_{\Lambda}H/{}^{4}_{\Lambda}H \sim 1/4$ for (e, e'K+) channel; we estimate ${}^{3}_{\Lambda}H/{}^{4}_{\Lambda}H \sim 1/3$ for (K-, pi0) channel (thanks for Prof. Harada);
- * With a well known background from T77, we need $5days \times 70kW$ beam time to measure the ${}^{3}_{\Lambda}$ H production cross section

DOI: 10.1103/PhysRevLett.93.242501

Estimation for ${}^{3}_{\Lambda}$ H yield based on T77

Target	⁴ He	³ He	
Density	2.17E+23/cm ²	1.42E+23/cm ²	
Beam time	3days × 50kW	5days × 70kW	
two-body pi- decay B. R.	50%	25%	
Relative cross section	1 A. U.	1/3 A. U. (educated guess)	1/4 A. U. (JLab data)
pi- signal yield	~1.2k	~300	~200

 ${}^{3}{}_{\Lambda}$ H yield needs to be measured in Stage-1 experiment, helping to determine the beam time for lifetime measurement.

Staging strategy for P73

Staging:	Stage-0	Stage-1	Stage-2
Task:	Background study for ³ _A H	First measurement for ³ He(K-, pi0) ³ _A H reaction	Direct lifetime measurement for ³ _A H
Output:	Established a new method as: (K-,pi0) + decay spectrum	Production cross section study for ³ ^A H @ 1GeV/c	Pin down Hypertriton lifetime puzzle
Status:	Cleared by T77 experiment	Applied for Stage-1 approval in this talk	Depends on Stage-1 results

- We have successfully performed J-PARC T77 to study the feasibility of P73
 - With only 3days beam time, we refreshed the world record of ${}^{4}_{\Lambda}$ H statistics for its lifetime measurement
 - a new and effective way to study hypernucleus is established
- * A direct measurement for hypertriton lifetime proposed in P73 has been proved to be feasible and promising by T77

Acknowledgement

- Support from ELPH staff Prof. T. Ishikawa
- Financial support from Prof. M. Iwasaki and great help from many other collaborators
- In particular, our brilliant main collaborators:
 - * T. Akaishi (PhD student), T. Yamaga (Postdoc)
 - * T. Hashimoto, F. Sakuma (co-spokesperson)

T. Akaishi¹, H. Asano¹⁰, X. Chen⁴, A. Clozza⁶, C. Curceanu⁶, R. Del Grande⁶, C. Guaraldo⁶, C. Han^{4,10}, T. Hashimoto³, M. Iliescu⁶, K. Inoue¹, S. Ishimoto², K. Itahashi¹⁰, M. Iwasaki¹⁰, Y. Ma¹⁰, M. Miliucci⁶, H. Noumi¹, H. Ohnishi⁹, S. Okada¹⁰, H. Outa¹⁰, K. Piscicchia^{6,8}, F. Sakuma¹⁰, M. Sato², A. Scordo⁶, D. Sirghi^{6,7}, F. Sirghi^{6,7}, K. Shirotori¹, S. Suzuki², K. Tanida³, T. Yamaga¹⁰, X. Yuan⁴, P. Zhang⁴, Y. Zhang⁴, H. Zhang⁵

 ¹Osaka University, Osaka, 560-0043, Japan
 ²High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
 ³Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
 ⁴Institute of Modern Physics, Gansu 730000, China
 ⁵School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China
 ⁶Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
 ⁷Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania
 ⁸CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy
 ⁹Tohoku University, Miyagi, 982-0826, Japan

¹⁰RIKEN, Wako, 351-0198, Japan

Requests for J-PARC Hadron Facility

- After successfully carried out Stage-0 study as T77, we formally apply for stage-1 approval
 P73 --> E73
- Beam time request:
 - 5days × 70kW (350kW*day) beam time with liquid He3 target to study the Hypertriton production cross section
- Beam time allocation:
 - P73 will be fully ready to run by December, 2020
 - We request beam time BEFORE long shut down of 2021

é

P73 proposal status

- First version submitted to 26th PAC --> more details should be provided based on simulation
- Revised proposal submitted to 27th PAC --> need to clarify systematic error
- Systematic error explained in 28th PAC by F. Sakuma --> PAC suggests us to carry out feasibility study with He4 target
- Feasibility study with He4 is proposed as P77 --> 29th PAC approved our T77 proposal --> our presentation today & apply for Stage-1 approval

Physics Motivation

 Recent heavy-ion experiments reported different lifetime of hyper-triton, ³_ΛH:

	STAR (2018)	ALICE (2018)	free Λ		
	142 ⁺²⁴ ₋₂₁ ± 29 ps	237 ⁺³³ ₋₃₆ ± 17 ps	263 ± 2 ps		
• $\tau({}^{3}_{\Lambda}H) \sim \tau(\text{free }\Lambda)$ is naively expected, because ${}^{3}_{\Lambda}H$ is					
kn	nown to be very	loosely bound s	ystem (~0.13Me	eV)	

need to clarify the situation using different experimental technique

${}^{4}_{\Lambda}$ H Lifetime @ KEK

- ⁴He(stopped K⁻, π^{-})⁴ _AH reaction
- The lifetime was obtained from a fitting with a simulated spectrum

Time Zero Alignment Estimation with the E15 Data

- E15-2nd data (Run65, ³He(K⁻,π⁻)X)
 - Time zero can be determined within 5 ps
- Error propagated from the time zero alignment is estimated to be <5 ps with MC simulation