E73 status report toward Stage-2 approval

Yue MA from RIKEN

y.ma@riken.jp

20210715

Outline

- Introduction to J-PARC E73:
 - The first direct measurement for ${}^{3}_{\Lambda}$ H lifetime
- J-PARC E73 staging & status
 - Phase-0: ${}^{4}_{\Lambda}$ H lifetime as feasibility study, June, 2020
 - Phase-1: ³_ΛH production cross section measurement, May, 2021
- Summary

Introduction: hypertriton lifetime puzzle

As the lightest hypernucleus, ${}^{3}{}_{\Lambda}$ H serves as the corner stone for hypernuclear physics just as deuteron for nuclear physics. Up to a few years ago, we believe: $\tau \approx 263$ ps (B_{Λ} = 130 ± 50 keV).

 ${}^{3}_{\Lambda}H \longrightarrow {}^{3}He + \pi$ - decay probability: kinematics× | transition matrix | ² ~ phase space×wave function overlap *a small term* (separation of ~10fm)

A well separated wave function between Λ and deuteron implies small modification of ${}^{3}{}_{\Lambda}$ H lifetime from deuteron and, thus, its lifetime should be presumably determined by free Λ decay.

Introduction: hypertriton lifetime puzzle

As the lightest hypernucleus, ${}^{3}_{\Lambda}$ H serves Up to a few years ago, we believe: as the corner stone for hypernuclear physics $\tau \approx 263$ ps (B_{Λ} = 130 ± 50 keV); just as deuteron for nuclear physics. However, heavy ion experiments

Hypertriton lifetime puzzle challenges the very foundation of our knowledge for hypernucleus.

Collaboration	Experimental method	$^{3}_{\Lambda}$ H lifetime [ps]	Release date
ALICE	Pb collider	240^{+40}_{-31} (stat.)±18(syst.)	2019
STAR	Au collider	$142^{+24}_{-21}(\text{stat.})\pm 29(\text{syst.})$	2018
HypHI	fixed target	$183^{+42}_{-32}(\text{stat.})\pm 37(\text{syst.})$	2013

suggest $\tau \approx 180 \text{ ps...}$

Neither fish nor fowl?

Picture taken from MM. Block et al. Proc. Int. Conf. Hyperfragments, 1963

Recent updates from STAR (as an example)

What happened? What shall we do?

L. Adamczyk et al., Phys. Rev. C, 97, 054909, (2018) Yue-Hang Leung, Joint THEIA-STRONG2020 and JAEA / Mainz REIMEI Web-Seminar

$^{3}\text{He}(\text{K}^{-}, \pi^{0})^{3}_{\Lambda}\text{H}$ vs heavy ion production

Experiment	J-PARC E73	BNL STAR	
Production method	³ Не(К-, рі0) ³ _Л Н	Au+Au	
Microscopic process	Strangeness exchange	Thermal model; Coalescence model	
PID	pi- momentum	Invariant mass; ${}^{4}_{\Lambda}$ He mixture?	
Quantum number	spin=1/2 dominant	1/2 and 3/2 mixture?	
Lifetime derivation	Time of flight	Decay length	

E73 experimental setup

The idea of *direct measurement*: $T_{CDH}-T_0=t_{beam}+t_{\pi}-+\tau$;

- 1. A complementary measurement for Heavy Ion results
- 2. Achievable precision: $\sigma/\sqrt{N} \sim 30$ ps

J-PARC E73 staging & status

Staging:	Phase-0 (June, 2020)	Phase-1 (May, 2021)	Phase-2
Task:	Background study with ⁴ He(K-,pi0) ⁴ ^H	First measurement for ³ He(K-, pi0) ³ _A H reaction	Direct lifetime measurement for ${}^3_{\Lambda}$ H
Output:	Established a new method as: (K-,pi0) + decay spectrum	Production cross section study for ${}^{3}_{\Lambda}$ H @ 1GeV/c	Pin down Hypertriton lifetime puzzle
Status:	⁴ _A H lifetime publication under preparation	Fully ready for beam time from now on	Depends on Phase-1 results

To be covered in this talk

E73 Phase-0: feasibility study

E73 Phase-0: ${}_{\Lambda}^{4}$ H lifetime results

Stability and time response function from prompt hadronic events

 $\tau = 180 \pm 7 \text{ ps} \text{ (stat. only)}$

E73 Phase-1: ${}_{\Lambda}^{3}$ H production cross section

Completed in May, 2021 Stable beam condition: 97.5% up time Thanks for the J-PARC staffs!

- * ${}^{3}_{\Lambda}$ H production cross section;
- Both 2-body & 3-body decay from ³_ΛH has been observed;

E73 Phase-1: ${}_{\Lambda}^{3}$ H discussion

- First *direct* determination for ${}^{3}_{\Lambda}$ H ground state spin (I=1/2)
 - Yield of ³_ΛH is comparable with Prof. Harada's calculation (arXiv:2106.04256v1)
 - No ambiguities from 3/2 excited state and mis-identification as in heavy-ion experiments
- * Main source of background is from quasi-free hyperon in-flight decay; systematic error can be estimated by comparing simulation with controlled sample as demonstrated by ${}_{\Lambda}^{4}H$ --> in progress

- Based on previous results, E73 is ready for the Stage-2 approval
 - Phase-0 (June, 2020): preliminary results for ${}^{4}_{\Lambda}$ H lifetime has been obtained to demonstrate the feasibility of our approach
 - Phase-1 (May, 2021): ${}^{3}_{\Lambda}$ H production cross section has been measured as a reference for Stage-2 beam time request
- * Feasibility and security have been confirmed by Phase-0 & Phase-1 results --> waive of FIFC report?
- Request for E73 Stage-2 approval with 25days@80kW beam time for ~1k 2-body decay events (scaled with Phase-1 data)

Thank you for your attention!

T. Akaishi¹, H. Asano¹⁰, X. Chen⁴, A. Clozza⁶, C. Curceanu⁶, R. Del Grande⁶, C. Guaraldo⁶, C. Han^{4,10}, T. Hashimoto³, M. Iliescu⁶, K. Inoue¹, S. Ishimoto², K. Itahashi¹⁰, M. Iwasaki¹⁰, Y. Ma¹⁰, M. Miliucci⁶, H. Noumi¹, H. Ohnishi⁹, S. Okada¹⁰, H. Outa¹⁰, K. Piscicchia^{6,8}, F. Sakuma¹⁰, M. Sato², A. Scordo⁶, D. Sirghi^{6,7}, F. Sirghi^{6,7}, K. Shirotori¹, S. Suzuki², K. Tanida³, T. Yamaga¹⁰, X. Yuan⁴, P. Zhang⁴, Y. Zhang⁴, H. Zhang⁵

 ¹Osaka University, Osaka, 560-0043, Japan
 ²High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
 ³Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
 ⁴Institute of Modern Physics, Gansu 730000, China
 ⁵School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China
 ⁶Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
 ⁷Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania
 ⁸CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", 00184 Rome, Italy
 ⁹Tohoku University, Miyagi, 982-0826, Japan

¹⁰RIKEN, Wako, 351-0198, Japan

backup

F

How does E73 work by tagging single γ-ray?

oL

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

beam momentum in Lab. [GeV/c]

1.8

 $\pi^{0}: 0 \sim 1 \text{GeV}/\text{c}; 0 \sim 180 \text{deg}$ π⁰ momentum Lab. [GeV/c] 500 400 0.8 0.6 300 0.4 200 0.2 100 160 180 θ_μ. Lab. [degree] 40 100 120 20 60 80 140

Input

W / PbF2 calorimeter cut π^0 : 0.8~1GeV / c; 0~10deg

³He(K-, pi0)³ $_{\Lambda}$ H strangeness exchange reaction is known for its spin non-flip feature --> helps to pin down the ³ $_{\Lambda}$ H Q.N.

Experimental setup: π^0 tagger (PbF₂)

Crystal	Radiation length	Moliere radius	Density	Cost	Resolution	Signal length
PbF ₂	0.93 cm	2.22 cm	7.77 g/cm ³	12 USD/cc	5%	2ns

D.F. Anderson, *et al.*, Nucl. Inst. Meth. A290 (1990) 385 P. Achenbach, *et al.*, Nucl. Inst. Meth. A416 (1998) 357

PbF2 calorimeter performance

- PbF2 calorimeter is installed *INTO* the meson beam line to tag fast pi0;
- All segments of PbF2 calorimeter works well with reasonable resolution even in high rate conditions.

CDS tracking performance

- CDS tracking system works well;
- ~2% momentum resolution for ~100MeV/c pi- signals;
- TOF resolution ~137ps from prompt pi- scattered event

Side band subtraction from ${}^{4}_{\Lambda}H$

Background study

- Full simulation for quasi-free processes
- Angular distribution from the database,
- Tentative Fermi motion parameter from Ma-san

Lifetime analysis (cont.)

• Yields of Λ , ${}^3_{\Lambda}H$, ${}^4_{\Lambda}H$ as a function of $L/\beta\gamma$

- Well described by exponential functions $N(t) = N_0 e^{-L/\beta\gamma c\tau}$
- Lifetime extracted with χ^2 fit

STAR

• Extracted A lifetime $(265.0 \pm 2.2)[ps]$ consistent with PDG value $(263.1 \pm 2.0)[ps]$

Calculated 3-body decay spectrum

FIG. 4. Differential decay rates $d\Gamma^{p+d}/dk_{\pi}$ (long dashed curve), $d\Gamma^{p+p+n}/dk_{\pi}$ (short dashed curve), and their sum (solid curve) including FSI. Neglecting FSI the rates are drastically shifted: $d\Gamma^{p+d}/dk_{\pi}$ (long dashed dotted), $d\Gamma^{p+p+n}/dk_{\pi}$ (short dashed dotted), and their sum (dotted).

DOI:https://doi.org/10.1103/PhysRevC.57.1595

cross section & spin of Hypertriton

(e, e'K+) reaction @ J-Lab

- ⁴_ΛH contains both 0+ and
 1+ states (spin-flip
 favored) in J-Lab results;
- * ³_∧H is pure 1/2+ or has a virtual 3/2+ state near threshold?
- Can not be distinguished with ~4MeV resolution